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Abstract--There is a regime of two-phase flow in which large waves or surges pass rapidly along a 
horizontal tube accompanied by splashing, wave-breaking and entrainment with the result that 
water is thrown to the upper surface of the tube. Between surges the film on the top surface is 
depleted by draining under gravity and by evaporation if the tube is heated. If the interval between 
surges is sutficiently long a dry patch may begin to form. In this paper, a theory is given for the cal- 
culation of the film thickness left behind on the top surface and for the calculation of the time to 
dryout. The theory includes both the effect of the boundary layer development during replenishment 
of the film and also the effect of the axial deceleration of the film at the point where the liquid 
replenishment ceases. Finally, the predicted variation of film thickness is compared with experimen- 
tal film thickness traces obtained in this type of horizontal two-phase flow. The agreement is 
found to be very satisfactory. This analysis is of interest in connection with the prevention of 
permanent and intermittent dryout at low qualities in nuclear power station evaporators. 

1. I N T R O D U C T I O N  

One of the regimes of horizontal gas-liquid flow is characterized by the passage of large 
disturbances which maintain a liquid film on the upper surface of the tube. Such a dis- 
turbance appears to consist of a large breaking wave of foaming liquid, a portion of which 
is continually being splashed and sprayed onto the surface of the tube above the wave or 
thrown forward such that it falls into the liquid layer ahead of the oncoming wave. The 
liquid thrown to the upper surface forms a thick film which is so disturbed by surface waves 
and by impinging droplets that the whole tube usually becomes opaque for a distance of 
from 0.1 to 1.0 m. When the wave has passed, the film on the upper surface drains down the 
side walls of the tube and, unless another large disturbance arrives, the film eventually 
breaks down. In a heated tube, evaporation of the film causes a dry patch to form much 
sooner. 

The above description is largely derived from an experimental study undertaken at the 
Central Electricity Research Laboratories using an atmospheric air-water facility with a 
horizontal test-section consisting of a perspex tube 51 mm in diameter. Visual observation 
and high speed cine film indicated the basic structure of the flow. Traces showing the varia- 
tion with time of the film thickness on the upper surface of the tube were also obtained 
using the probe described by Coney (1973). In some tests a special technique was used to 
superimpose the film thickness traces onto the cine film so that the thickness variation~ 
could be related directly to the wetting events occurring simultaneously in the tube. 
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Other investigators have described similar phenomena in various two-phase systems, 
usually applying the term "slug flow" as a classification (e.g. Alves 1954; Baker 1954). 
Some excellent photographs are shown by Schicht (1969), who also describes the change in 
appearance of the flow with increasing gas velocity. A useful description of this type of 
flow is also given by Zahn (1964) who made a visual study of evaporating refrigerant R-22 
in a horizontal tube approximately 12 mm in diameter. The term "slug flow" is avoided 
in this paper for two reasons: firstly, the term is often applied to another regime in which 
the gas flows in the form of large bullet-shaped bubbles. This type of flow can occur in a 
tube of any inclination. Secondly, the term "slug flow" may be taken to imply that the tube 
is blocked by liquid. In fact, it was found in the C.E.R.L air-water facility that in the flow 
ranges of 8 m/sec < V~ < 20 m/sec and 0.3 m/sec < VL < 1.5 m/sec the film thickness 
measured on the top surface rarely exceeded the maximum range of the probe which 
was 2.5 ram. (VG and VL are the gas and liquid superficial velocities, respectively.) This 
was also true at lower gas velocities (,,~5 m/sec), provided the liquid velocity was not 
too high (,~ 0.4 m/sec). Further evidence that the tube is not blocked is given by the fact 
that when VG > 8 m/sec, the disturbance moves slower than the superficial velocity of 
the gas, and liquid entrainment is blown forward ahead of the disturbance. For these 
reasons, the disturbances described here are referred to as "surges". 

Figure la shows a diagrammatic representation of the mechanisms by which surges 
are believed to distribute water to the upper surface of the tube. Figure lb shows an idealized 
picture which is used as the model for the calculation presented in this paper. It is assumed 
that replenishment to the upper surface takes place uniformly over a finite length of tube. 
At the end of the surge the replenishment is assumed to cease abruptly. In the present 
analysis it is assumed that the forward velocity of the liquid replenishment striking the 
film on the top surface is the same as that of the surge. In practice, the liquid droplets may 
be slightly accelerated by the gas flow. On the other hand, if some of the replenishment 
arrives as a result of splashing against the side walls of the tube, the velocity could be lower 
than that of the surge. However, neither effect is thought likely to change the velocity by an 
amount comparable with the velocity of the surge. The further assumption that the momen- 
tum transfer due to the impinging droplets is much larger than that due to the shear forces 
of the gas flow, leads to the result that the velocity of the liquid outside the boundary layer 
in the film is the same as that of the surge. 

As shown in figure l b, the boundary layer of decelerated liquid begins its growth at the 
front of the surge. When replenishment ceases, only the boundary layer is left behind. The 
variation of thickness of ,the film after this point is determined by the change in the velocity 
profile, by viscous draining and by evaporation of liquid from the film. The analysis pre- 
sented here, which takes account of all the processes described above, finally results in a 
prediction of the variation of the film thickness behind a surge. These predictions are then 
compared with draining curves which have been obtained experimentally in an unheated 
two-phase flow. Calculations, which include the effect of an applied heat flux are also 
performed, and these show how the time to dryout behind a surge varies as a function of 
the heat flux, tube radius and the physical properties of the gas and liquid phases. 

The work described here is of interest in connection with the observation of permanent 
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Figure 1. Pictorial representation of replenishment and draining processes (not to scale). (a) The 
situation as it is in practice with some typical dimensions and velocities. (b) The idealized picture. 

and intermittent dryout at low heat fluxes in horizontal evaporator tubes containing a 
low quality (<~ 25 per cent) flow of steam and water. The observations were made by Lis & 
Strickland (1970) who used a high pressure facility to investigate the conditions which led 
to on-load corrosion in the horizontal evaporator tubes of one of the nuclear power 
stations of the CEGB (see Lunn & Harvey 1970). Flow regime studies at C.E.R.L. and 
elsewhere (e.g. Schicht 1969) and the evidence of experiments with vapour-liquid systems 
with density ratios near to that of steam and water at boiler pressures (Zahn 1964; Wede- 
kind 1971), strongly support the idea that surges of the type described here are of importance 
in dryout phenomena. 

2. DRAINING OF THE LIQUID FILM 

Draining of the liquid film from the upper surface of the tube takes place both during 
the passage of the surge when replenishment occurs and also after the surge has passed and 
replenishment has ceased. Not only does it largely determine the rate of loss of liquid 
from the film, but it also has a profound effect on the development of the boundary layer. 
The problem of draining of a stationary film from the inside of a horizontal tribe has been 
considered previously by Gardner (1972). The analysis of static draining given in this 
section is similar but has been modified in order to reduce the complexity of the boundary 
layer and film thickness calculations which follow. 
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Ignoring the curvature of the tube wall. except insofar as it affects the inclination (l) of the 
surface to the horizontal, drainage of a thin liquid film down the walls of a horizontal 
tube may be calculated by means of a simple balance between gravitational and viscous 
forces: 

OW 
Ap g sin(I)(H - Y) = pv OY' [1] 

where Y is the radial distance (m) measured inwards from the wall of the tube, H is the 
film thickness (m) and W (m/sec) is the velocity in the circumferential direction (see 
figure 2at; g is the gravitational acceleration (m/sec2), p is the liquid density (kg/m3); 
Ap is the density difference between the two phases (kg/m 3) and v is the kinematic viscosity 
of the liquid (m2/sec). Integrating [1] we obtain 

w = ApgsintbY(H - Y)" [2J 

Differentiating with respect to (I) and taking the limit as ~ --, 0: 

~ W -  I O W - A p g Y ( H - -  - -  - Y ) ,  [3] 
t~Z R ~¢b pRy 

where Z is the distance in the direction tangential to the tube at (I) = 0 and R is the tube 
radius (m). 

These equations only apply when inertia effects are negligible. In practice, the velocity 
within the liquid film is limited by the maximum velocity W m (m/sec) that the liquid could 
attain by free fall under gravity from the top of the tube. This vetoeity is given by 

W m ~-- [2gR(1 - cos ¢P)Ap/p] 1/2. [4] 

Thus, the film thickness H,, (m) at which the surface velocity given by [2J reaches Wm is 
given by 

= [4v2pR11/4 
H,. L gAp A as (I) --. 0. [51 

Defining a parameter Hp' 

Hp = H if H ~ Hra 

H p = H , , -  if H / > H m ,  [6] 

an approximate description of the draining behaviour of both thick and thin films may be 
obtained by assuming that 

OW _ Apg y i Hp _ ~ Y~ for Y <<. H., [7] 
OZ pRy 

0 W Apg H2m 
OZ pRv 2 for Y >/Hm. [8] and 
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Equation [8] has been obtained by differentiating [4] with respect to ~, substituting [5] 
and taking the limit as • ---, 0. 

3. THE BEHAVIOUR OF THE BOUNDARY LAYER 

In figure lb, a boundary layer is seen to form in the film above the surge, where replenish- 
ment is taking place. In the following analysis it is assumed that the boundary layer is 
laminar. This assumption is examined in Appendix 1 where it is shown that transition to a 
turbulent boundary layer is unlikely except when the surge velocity is very high (-~ 8 m/sec 
in an air-water system). In this section it is shown that the growth of the boundary layer 
is limited by the effects of draining so that (provided the region of replenishment is long 
enough) a stable velocity profile is obtained. However, if the liquid film is significantly 
thinner than the maximum thickness that the boundary layer can attain, the velocity 
profile of the stable boundary layer is severely modified. When replenishment ceases, the 
boundary layer, whatever its profile, becomes the film. However, the same type of boundary 
layer analysis can be applied in this region also. 

Viscous draining plays an important part in both regions. Evaporation on the other 
hand, which is assumed to take place from the surface of the film rather than as a result of 
nucleate boiling, is only given special consideration where replenishment has ceased. 
Where there is replenishment, the effect of evaporation could be considered by simply 
subtracting the appropriate quantity to give a net rate of liquid replenishment to the 
upper surface. In practice, however, it is easier to measure an approximate average thickness 
of the film above a surge than it is to estimate the rate of replenishment. A film of known, 
constant thickness is therefore chosen as the starting point of the analysis. 

3.1 The modified boundary layer equations 

It is convenient for the purposes of the analysis to consider the surge to be stationary and 
the tube wall to be moving with a velocity Uo (m/sec). Thus, the idealized profiles of the 
surge and the associated liquid film do not change with time. This situation is illustrated 
in figure 2b. The growth of the boundary layer of thickness B on the upper surface of the 
horizontal tube is essentially a three dimensional problem. The boundary layer equations 
are (Schlichting 1968, p. 239) 

OU ~V OW 
OX + ~ + 0--Z- = 0 [9] 

OU OU OU 1 OF O2U 
and U~-X + V~-~ + W~-~ = p dX + v Oy 2 [10] 

where X is the distance measured in the axial direction, "U, V and W are the velocities in 
the X,. Yand Z directions and P is the pressure (N/m2). Since we are only concerned with 
the position ~ = 0, by symmetry W must vanish. Also, the pressure gradient is assumed 
to be negligible (Appendix I). 
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Figure 2. Illustration of certain parameters in the problem. 

In t roduc ing  the non-d imens iona l  distances 

x =  X / H , , ,  y =  Y / H , , ,  z = Z / H , ,  

and h = H / H , . ,  h v = H v / H , , ,  

also the non-d imens iona l  velocities 

V = UH, . /v ,  

[9] and [10] reduce to 

and [7] and [8] become:  

v : VHm/v ,  w = W H m / v ,  

3u 3v Ow 

ax + a v + 7 z  O, 

~u ~u ~2u 

u c~x + v ~Y 0y 2 

~W 
0z 2y(2hp y) when y ~< 1, 

~W 
- - =  2 when y > /  1, 
0z 

where h v has the p roper ty  that  h v = h i fh  ~< 1 and h v = 1 i fh  >~ 1. 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 
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3.2 The momentum integral approximation 

An approximate solution to the boundary layer equations, [14] and [15], may be obtained 
by applying a modified version of the momentum integral method of Pohlhausen and 
yon Karman I Schlichting 1968, p. 145). Integrat ing E 141. using [ 161 and [ 17] we obtain for the 
cases where y ~< 1, y t> 1 respectively 

f~Ou 2 3 v = - ~xdY  - 2y2hv + -~y , [18] 

['YOu 2 
and v = - Jo oxdY + ~ -  2y. [19] 

Having obtained expressions for v, the momentum equation [15] is integrated over the 
dimensionless boundary layer thickness b. Thus 

~U 
since ~yy 

U~x + V~y dy = - 
~SYlr=o 

= 0 a t y = b .  

Before substituting v into [20] we note that by integrating by parts 

~Y~.)o Ox y ] d y = u b J  oOx d y -  U~xdY 

w h e r e u = u  b a t y = b . "  
From [18]-[21] we find that the expression 

- Ub[ ~ - d y  + 2 U~xdY a o cx gyy r=o 

[20] 

[21] 

is equal to 2.y2hv - ~ y 3 ~ y d y  for b ~< 1 [22] 

or equal to 2y2 _ ~y3 ~yydy + 2y - ~yy dy if b >/ 1. [23] 

3.3 The velocity profile in the boundary layer 

At this stage it is necessary to assume a velocity profile for the boundary layer. We 
assume a profile of the form (Schlichting 1968, p. 192) : 

u = Uo + aly + a2y 2 + aay a + a4y 4, [24] 

where Uo is the dimensionless velocity at y = 0, and al to a4 are constants which are 
determined by the boundary conditions.  These are that, at the wall where y = 0, u equals 
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u o and that since ~?u/~x = 0 and v = 0, then from [15], 02u/Oy 2 is also zero at y = 0. Also 
at the edge of the boundary layer where y = b, u = Ub, and if the shear at this point is zero, 
then Ou/@ = 0. Also, if Ub is a constant then from [15] OZu/ay2 = 0 at y = b. It may be 

shown that with these conditions, [24] becomes 

,3 ,4 / 
u = u  o - ( u o - u b )  2 - 2 ~ + ~  • [25] 

This profile is assumed in all the following calculations, except for the stable boundary 
layer, in which case the velocity profile is calculated. 

In some of these calculations u b is allowed to vary, which means that the condition 
O2u/ay2 = 0 no longer applies at y = b. In this case the profile should strictly be modified 
from [25], but since this would involve a considerable complication of the theory to avoid 
errors which are probably not very significant, it is assumed that [253 is valid throughout. 
It may be shown that substitution of [253 into [22] and [23] yields: 

I 74 293 

b2dub ~ u  o + ~ u b j  bdb[23 

2 dx (u o -  u 0 + 2 d x L i ~  u° + 
74 u'] 
630 bj+f~(b)- 1 =0 [26] 

where ,fa(b) = b 3 12hv b ) / i 5  4-2 if b ~< 1, [27] 

3b 2 b 1 1 1 
but fl(b) - 10 3 + 6 30b 2 + 105b ~ if b >~ 1. [28] 

4. THE BOUNDARY LAYER ABOVE THE SURGE 

In this region, provided the growth of the boundary layer has not been limited by the 

thickness of the film. the velocity at the edge of the boundary layer is constant, so that 

Hence, from [26] 

dub/dx = O. 

fj b db 
1 - fx(b) 

2x 

23 

15~ u° 
If the effect of draining on the boundary layer growth 
so from [29] 

4x 

b =  / 2 3 u  74 

1126 o + 6 ~  

7 4 )  
+ 6~-6ub 

[29] 

can be ignored,fl(b) becomes negligible, 

11/2. 

u )j [3o] 
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Two special cases are worth noting. Firstly, if ub = 0 (which is the case of most importance 
in the present analysis), then 

--- 4.681 ~/~oo" [31] b 

This result has been obtained previously by Sakiadis (1961). Secondly, if uo = 0, it is found 
that the boundary layer grows more rapidly and 

b = 5.836 • [32] 

Equation [32] is the momentum integral approximation to the problem of the laminar 
boundary layer on a flat plate. The velocity profile obtained from [25] using [32] may 
theretore be compared with the exact solution, which is given by Schlichting (1968, p. 129). 
It is seen from table 1 that the agreement between the two solutions is excellent. 

To obtain the boundary layer thickness as a function of distance in the case where 
draining takes place, [29] has been integrated numerically to give b as a function of the 
parameter e, where 

2x 

= 1 2 3  u 74 / [33] 
~126 o + ~-~Ub J 

The results are shown in figure 3, which also includes for comparison, the function [30] 
which would have been obtained in the absence of draining. It is seen that draining has the 
important effect of progressively retarding further growth as the boundary layer thickness 

Table 1. Compar ison between the m o m e n t u m  integral 
approximation and the exact solution for a boundary  

layer on a fiat plate 

. u 
y - -  (exact) - -  (approx) 

Ub Ub 

0.2 0.0664 0.0685 
0.4 0.1328 0.1365 
0.8 0.2647 0,2694 
1.0 0.3298 0,3335 
1.4 0.4563 0,4555 
2.0 0.6298 0.6187 
2.4 0.7290 0,7120 
3.0 0.8461 0.8262 
4.0 0.9555 0.9474 
5.0 0.9916 0.9942 
5.8 0.9984 0.9995 

J,M.F., Vol. 1, No. 5--D 
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Figure 3. Comparison of boundary layer growth with and without the effect of draining. 

increases. It can be seen from [281 and [293 that the boundary layer reaches an asymptotic 
thickness given by 

3b 2 b 5 1 l 
+ - -  - 0 [34] 

10 3 6 30b 2 1 0 5 b  a 

which has a solution b~ax = 2.3175. It should be noted that this behaviour is closely ana- 
logous to that of boundary layer suction, which also results in an asymptotic thickness. 

Typical parameters for an atmospheric a i r -water  flow are Ap = 103 kg/m 3, v = 8 x 

10 - 7  m2/sec, R = 0.025 m. Hence, from [5], H,, = 0.284 mm. With ub = 0, the parameter  

is given by 

x v X 
= 1 1 . 0 - - =  11.0 - 109 T~ [35] 

u o H ~  U o 

where T~ is the time (sec) for the surge to pass a given point. Film thickness traces show that 
T~ is typically between 0.1 and 0.3 sec. Thus e generally lies between 10 and 30, which 
suggests (see figure 3) that the boundary layer at the end of a surge in a i r -water  flow is 
always close to its asymptotic thickness of 0.66 mm, provided the replenishment rate to 
the upper surface is sufficient to maintain a film thickness greater than this value. 
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5. T H E  B O U N D A R Y  ' L A Y E R  G R O W T H  L I M I T E D  B Y  F I L M  T H I C K N E S S  

5.1 Change in the velocity profile of the boundary layer 

The analysis of the previous section involved the assumption that at y = b 

Ou/Oy -~- O, O2u/~y2 = 0. [36] 

However, this is only true if the film thickness is greater than the boundary layer thickness, 
so that there is a body of liquid with a velocity ub outside the boundary layer. However, 
if the replenishment rate is low enough, such that h < b . . . .  then a point is reached where 
the conditions [36] no longer apply. Under these circumstances it is seen from [15] that 
a t y  = h, 

V(~u/Oy) = 02u/ay  2 = )]., [37] 

where 2 is a parameter which may be introduced to develop another polynomial approxi- 
mation to the boundary layer profile. The special case 2 = 0 corresponds to the profile 
given by [25]. Once the boundary layer thickness equals the film thickness, further develop- 
ment can only take place by modification of the profile according to [37], with the value 
of 2 increasing from zero and approaching some asymptotic value. 

The analysis of the change in the boundary layer profile is not pursued here because it is 
unlikely that this part of the process is of practical interest. This is because the boundary 
layer develops rapidly and it has already been seen that in most cases it is likely that it 
achieves a stable profile before the end of the surge. In the following section it is shown 
how this stable velocity profile may be calculated directly. 

5.2 The stable asymptotic boundary layer 

The transverse velocity in the stable boundary layer (expressed in dimensionless form) 
may be obtained from [18] and [19]: 

v = - 2 y 2 ( h p - 3 )  for y~< 1, [38] 

v = - 2 ( y - ~ )  for y>~ 1. [39] 

Also, from [ 15] v(du/dy) = d2u/dy z. 

if h <~ 1, then hp = h and integrating [40] using [38] it is found that 

(Uo - u)/(Uo - Uh) = Ii(y)/II(h), 

where Uh is the value of u at y = h and where 

I1(~0) = exp - 

~O is an arbitrary constant with the limits 0 ~< ~, ~< 1. 

[40] 

[41] 

[423 
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If h/> 1, then hp -- 1 and for y ~< 1, it is found that 

(Uo - u)/(Uo - u l )  = l a ( y ) / I a ( 1 ) ,  [43] 

where Ul is the value of u at y = 1. Also for y t> 1, it is found from [39] and [4] that 

(u  I - u ) / ( u l  - u h) = 1 2 ( y ) / I 2 ( h )  [44] 

where I2(~') = exp _y2 + ~y  + dy, [45] 

and ~k ~> 1. A further necessary condition is that d u / d y  is continuous over the region where 
y = 1. Thus 

(U 1 - -  U h ) / ( U  o - -  U l )  = I 2 ( h ) e - 1 / Z / l l ( 1 ) .  [46] 

Eliminating u I it is found from [43] and [46] that for y ~< 1, 

u o - u l l ( y )  

Uo - uh - 11(1) + l z ( h ) e - 1 / 2 '  [47] 

and from [44] and [46], for y t> 1 

u o - u 11(1 ) + 1 2 ( y ) e  - 1 / z  
- -  = [483 
uo - Uh 11(1 ) + 1 2 ( h ) e - 1 / 2  

The displacement and momentum thicknesses 61, 62 of the stable boundary layer are 
defined as follows. 

al = fo" ( u - uh l dy, [49] 
U o - -  U h ]  

These two quantities represent the respective thicknesses measured from a frame of refer- 
ence travelling with a velocity u h. The displacement thickness 6t is clearly related to the 
total flowfL of liquid out of the surge into the film left behind. 

f L  = U d y  = (u  o - uh)61 + h u  h . [51] 

The case of greatest practical interest is that of u h = 0, when in the absence of draining and 
evaporation, the film left behind by the surge tends to a thickness 61 because of the accelera- 
tion of the whole film up to a velocity uo.  

5.3 S o l u t i o n  o f  t h e  e q u a t i o n s  f o r  a s t a b l e  b o u n d a r y  l a y e r  

Equations [417-[50] have been solved for films of different thicknesses by means of a 
simple computer program. Figure 4 shows the stable displacement and momentum 
thicknesses as a function of the film thickness above the surge, which from here onwards 
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Figure 4. The stable displacement and momentum thicknesses as a function of the film thickness 
above the surge. 

will be denoted hs to avoid confusion with the thickness of the film left behind by the surge. 
As expected from the analysis on the growth of the boundary layer, the displacement 
thickness approaches an asymptotic value which it cannot exceed because of the draining. 
of liquid from the boundary layer. The value obtained (0.689) is close to the expected value 
(0.695), which is the displacement thickness corresponding to the asymptotic thickness 
shown in figure 3. 

Figure 5 shows the stable velocity profile as a function of y/hs for films of various thick- 
nesses. With thin films the velocity profile is almost linear, but with thick films the boundary 
layer occupies only a part of the film. 

5.4 Comparison of the stable velocity profile with the approximate profile 

When the liquid film thickness h~ above the surge is greater than about 2.0 it is expected 
that there is close agreement between the stable velocity profile and the approximation 
of [25], because the boundary conditions on the profile are approximately correct. How- 
ever, at low values of hs, the stable profile becomes progressively more linear, as shown in 
figure 5. When the boundary layer leaves the surge it is no longer subjected to the drag 
caused by liquid replenishment on the surface, and so in those cases where the stable 
profile differs from the approximate profile, the profile changes back to a form close to that 
given by [25]. 

In the calculation of the behaviour of the boundary layer behind a surge, it is assumed 
that the behaviour of the film may be represented by a profile of the same form as [25], 
but with the same initial film thickness b~ and displacement thickness 51 as that of the 
appropriate stable profile. If the displacement thickness of the stable profile 51 is greater 
that 0.3 hs (which is the displacement thickness obtained from [25] and [49] when h~ = b), 
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Figure 5. The stable velocity profile for different film thicknesses above the surge. 

the correct displacement thickness is achieved by introducing an effective value of %, 
namely u*, such that 

u ° - U * - u o  - Ub 10( 1 7  -- 6~). [52] 

Thus, the initial profile [25] is modified to 

u r = ~ -  1 -  h~ + if 61 >0 .3hs  [53] 

where u r = (u o - u)/(uo - %). [54] 

In the cases where 61 < 0.3 hs it is assumed that the profile is initially given by [25] 
with bi = 61/0.3 and that in the region bi ~< y ~< hs, u = ub = 0. Table 2 shows a comparison 
between the stable and the approximate profile for h~ = 2.0 and 3.0. It was found that both 
profiles for h~ = 5.0 differed from the corresponding profiles for h, = 3.0 by less than 
0.1 per cent, so these were not included. It is seen from table 2 that there is very close 
agreement between the stable and the approximate profile for hs --- 3.0. In the case of 
h~ = 2.0, where the velocity profile has been calculated from [53], the agreement is not so 
good, there being a maximum error of about 5 per cent. 

Applying the ideas of this section, it is possible to calculate the initial values of the bound- 
ary layer thickness b i and the effective velocity u~' at the edge of the boundary layer (for the 
case where the initial value of Ub is zero). These parameters are plotted in figure 6 versus 
the film thickness hs above the surge. 
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Table 2 

Distance Stable profile Approx profile Stable profile Approx profile 
from wall u, for h~ = 2.0 u, for h s = 2.0 u, for h~ = 3.0 u, for h, = 3.0 

0.2 0.1724 0.1884 0.1702 0.1729 

0.4 0.3420 0.3667 0.3375 0.3387 

0.6 0.5021 0.5269 0.4956 0.4915 

0.8 0.6448 0.6633 0.6364 0.6268 

1.0 0.7631 0.7726 0.7532 0.7416 

1.2 0.8539 0.8535 0.8428 0.8342 

1.4 0.9182 0.9072 0.9063 0.9042 

1.6 0.9603 0.9372 0.9478 0.9526 
1.8 0.9858 0.9491 0.9730 0.9819 

2.0 1.0000 0.9509 0.9870 0.9960 

2.2 - -  - -  0.9942 0.9985 

2.6 - -  - -  0.9992 1.0000 

3.0 - -  - -  1.0000 1.0000 

6. T H E  B E H A V I O U R  O F  T H E  F I L M  L E F T  B E H I N D  B Y  A S U R . G E  

6.1 Theory 

It is assumed that behind the surge liquid replenishment to the film has ceased so that, 
if the shear stresses of the gas phase may be neglected, the film must diminish in thickness 
as it is accelerated up to the velocity of the wall. This effect is, of course, in addition to the 
reduction of the film thickness due to draining and evaporation. The acceleration of the 
film is taken into account by allowing ub to increase. Thus, with the assumption that the 
departure from the condition a2u/Oy 2 = 0 at y = b (caused by the variation of ub) may 
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Figure 6. Variation of the initial film thickness and surface velocity with film thickness above the 
surge. 



662 M.W.E. CONEY 

be ignored, the momentum equation is expressed by [26]-[28] with the added condition 
that, since the boundary layer is the film, b = h. 

In addition, it is necessary to derive an equation expressing the conservation of the liquid 

d[fo  ]fo dxx udy  + d z z d y + q - 0  [55] 

where q is a dimensionless parameter expressing the rate of evaporation 

QH,, 
q - [56] 

pLy 

and where Q is the heat flux (W/m 2) and L is the latent heat of evaporation (J/kg). From 

[55], [16], [17] and [25] it is seen that 

3 7 / db 7 dub 
]-6 Uo + ]~ ub] dxx + --10 b--dx + q + f2(b) = 0 [57] 

where f z ( b ) = 4 b 3  if b~< 1 , f 2 ( b ) = 2 b - ~  if b~> 1. [58, 59] 

The behaviour of the film outside the surge must be found by the simultaneous solution 
of the momentum equation [26] and the conservation equatiorr [57]. In doing this, it is 
convenient to express the equations in terms of the film thickness (h = b) as measured 
by a probe fixed to the walls of the tube at a dimensionless time t, (t = T/T,), where T 
is actual time (sec) and Tm is a characteristic time (sec) given by 

T,, = H~/v. [60] 

Thus, d/dt = uo(d/dx) and [261 and [57] become 

( f l -  1)(/)~ -- ~- ?0 630 (2) ~ = 2 ( A ) ~ 6 ~  i--O [61] 

dt 7 de) 7 
(fz + q) b - co - 1 [62] 

db 10 db 10 

where f l  andfz are given by [27] and [58] or [28] and [59] as appropriate, and co = 1 - ub/u o . 
Initial values of co and b are chosen such that co = 1 - u*/u o and b = bi when t = 0, 

where u~' and bi are given as functions of h~ in figure 6. Equations [61] and [62J may now 
be solved to find the variation of b and co with t. The dimensionless dryout time t a is the 
time t when the film thickness b becomes zero. 

6.2 Solution of the equations 

Equations [61] and [62] were solved numerically to give draining curves, the shape of 
which is determined by the film thickness h s above the surge and the heat flux parameter q. 
Figure 7 shows the effect of changing h s when q = 0 and also the effect of two different 
values of q for the case of h, > 2.3, which is referred to as the principal dynamic curve. 
Since it is found in practice that the vast majority of surges cause film thicknesses greater 
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than 2.3 H,,, this is the curve of greatest interest. The values of q chosen correspond to 
typical values for horizontal evaporators in Magnox and AGR power stations. Figure 7 
also shows the "static" draining curve which is obtained if the effects of the boundary layer 
development and the axial velocity profile are ignored. The equations for static draining 
are described in Appendix 2. It is seen from figure 7 that the static and dynamic curves 
coincide at a thickness ht = 0.48, if it is defined as the point at which the gradients of the 
two curves are within 10 per cent of each other. 

Figure 8 shows the calculated variation of the time to dryout for the case of a thick film 
above the surge (h s ~> 2.3). The dryout time is measured from the point where replenishment 
ceases. The comparison between the static and dynamic curves shows that the dynamic 
effects are particularly important at high heat fluxes. 

6.3 Comparison with experiment 

Figure 9 shows experimental film thickness traces obtained on the upper surface of a 
51 mm diameter horizontal perspex tube containing an air-water flow at 30°C. Under 
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Figure 9. Comparison of the theoretical dynamic curve for h s > 2.3 (which is shown by the dotted 
lines) with experimental traces, 
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these conditions H,, = 0.285mm and T,, = 0.102sec. Three examples are shown of 
wetting events observed when the gas and liquid superficial velocities were 4.0 and 0.3 m/sec, 
respectively. Each event is shown on two different vertical scales so that the film profile 
can be seen clearly over the whole range of the film thickness variation. The theoretically 
predicted dynamic draining curves corresponding to h~ >~ 2.3 are shown in each case. 
It is seen in figures 9a and 9b that the agreement between theory and experiment is very 
good. In figure 9c a thin film above the surge is shown where the draining curve drops 
more sharply at first, which accords with the prediction for cases where h~ < 2.0. 

It should be stated that although most of the film profiles caused by surges are similar 
to the theoretical prediction, there are often irregularities caused for example by the 
impingement of droplets near to the probe. At higher gas velocities (V G ~ 10 m/sec) the 
film becomes wavy due to the shear forces of the gas phase. Under these circumstances, 
however, it is found that the film follows the predicted curve, but with the wave structure 
superimposed. For increased gas flow (V~ ~ 20 m/sec) it is found that the wavy film does 
not drain below a certain minimum thickness after a surge passes. Reduction of the liquid 
flow to a value VL ~< 0.25 m/sec removes the surges, but a film is still maintained on the 
upper surface. This is not the case, however, at lower gas velocities. It is therefore concluded 
that when V~ > 20 m/sec, the mechanisms of horizontal annular flow are strong enough 
to maintain the film whether surges are present or not. 

7. C O N C L U S I O N S  

The theory given here relies on a number of simplifying assumptions which are necessary 
because of the complex, highly disturbed structure of two-phase flow. For example, it is 
seen from figure 9 that the film thickness does not remain constant during the passage of 
a surge. Also the replenishment varies in intensity and is in the form of finite sized drops. 
Furthermore, the replenishment does not cease abruptly as assumed in the model. Other 
problems arise because of the waves caused by the gas flow and because no two surges 
are the same. Indeed individual surges are continually developing and changing their form 
as they progress along the tube. In spite of these and other difficulties it is found that the 
theory given here gives good agreement with experimental draining curves. In particular, 
the theory explains the observed initial rapid fall in film thickness which was not predicted 
by the "static" draining theory of Gardner (1972). The theory given here also predicts the 
initial thickness at the start of the draining process, provided it can be assumed that the 
thickness above the surge is greater than twice the characteristic thickness H,,. Since this 
is true for the vast majority of surges observed in the air-water experiments where H,, = 
0.285 mm, it can also be expected to be true in high pressure steam-water flows where 
H,, = 0.1 mm. 
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A P P E N D I X  1 

The possibility of transition to a turbulent boundary layer (including consideration of the 
effect of a pressure" gradient) 

In this Appendix the assumption that the boundary layer is always laminar is examined. 
Consider the similar case of the boundary layer on a smooth flat plate. Experimental 
observations have indicated that transition to a turbulent boundary layer occurs when 
(Schlichting 1968, p. 454) 

U~D1 
"-~ 950 [1.1] 

v 

where Uo~ is the free stream velocity above the flat plate and D1 is the displacement thick- 
ness of the boundary layer. In terms of the dimensionless units used in this analysis, this 
suggests that transition would occur when 

(uo - Ub)6l "~ 950. [1.2] 

Since Ub is zero and 61 cannot be greater than about 0.69 (see figure 4), transition cannot 
take place unless Uo > 1380. This value corresponds to surge velocities of about 4.3 m/sec 
in an atmospheric air-water system or to between 1.6 and 2.0 m/sec in both high and low 
pressure boilers. All these values are quite likely to occur in practice. 
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It has been stated that there is an analogy between the effect of draining and the effect 
of suction on the development of the boundary layer, since both processes lead to a constant 
thickness and velocity profile. However, it has been pointed out to the author that this 
analogy does not extend to the question of stability, since the effects on the velocity profile 
are quite different. Suction causes an increase in the curvature of the velocity profile at the 
wall such that the critical condition for the onset of turbulence becomes (Schlichting 1968, 
p. 484) 

U~Dls 70000, [1.3] 
v 

where Dxs is the displacement thickness of the asymptotic suction profile. On the other 
hand draining has no effect on the curvature at the wall. " 

However, another important factor in the question of stability is the pressure gradient 
which has been neglected elsewhere in the analysis. If the pressure gradient is included, it 
may be shown that a modified velocity profile is obtained 

- -  -- b3 -t- ~-i + ~ ~ bE -t- b3 ~ ]  [ 1 . 4 ]  
uo - ub b 

where f~ in this case is given by 

B z dP 
f~ = pv(Uo - Ub) dX' [1.5] 

1; 
where U~ = Ub-H-£ 

It is interesting to note from this result that in contrast to the problem of a boundary layer 
on a stationary wall, an adverse pressure gradient leads the velocity profile nearer to a 
parabolic shape and therefore into a region of greater stability. 

Next, we make the assumption that the pressure gradient in the gas flowing over the 
surge is just sufficient to drive it along at its observed velocity Uo. Clearly the pressure 
gradient has to overcome the friction between the water in the surge and the lower part of 
the tube circumference, with which it is in contact. In addition, slow moving liquid must be 
continuously accelerated to the surge velocity in order to make up for the liquid thrown 
to the upper part of the tube and left behind when the surge has passed. Consideration of 
these two effects suggests that a reasonable approximation is obtained by calculating the 
pressure gradient in an annulus of liquid which is in contact with the whole perimeter of 
tube and is travelling at a velocity Uo. This yields the result that 

dP 2ypU 2 
- - - ,  [ 1 . 6 ]  

dX 2D 

where 2¢ is the dimensionless coefficient of resistance and D is the tube diameter (m). 
Combining [1.5] and [1.6], putting Ub = 0 and using the fact that B = 2.3175 HI,  we 

obtain 

BZ2U°=2.68 2j.Uo~/.APR t ) -  2vD g" [1.7] 



668 M . W . E .  CONEY 

Taking p = Ap = 1.0 x 103 kg/m 3, R = 0.025 m and 2y = 0.025, we find that when 
U o = 8 m/sec, which is about the highest surge velocity observed in the C.E.R.L. air-water  
facility, f~ _~ 1.0. 

Calculations described by Schlichting (1968, p. 471) predict that the theoretical critical 
Reynolds Number is raised from 645 to about 1200 when f~ = 1, If in practice the Reynolds 
Number for transition is raised by the same factor, a value of 1770 is obtained. This is very 
close to the actual Reynolds Number obtained when U o = 8 m/sec, suggesting that the 
boundary layer is at the point of transition at this velocity. 

The estimation of the pressure gradient given here could be too low, because of effects 
such as the reduction of the flow area available to the gas and the entrainment of liquid 
into the gas flow. Nevertheless, especially in view of the turbulence in the outer flow, it 
must be concluded that transition to a turbulent boundary layer is a distinct possibility 
at high surge velocities ( ,,~ 8 m/sec). A further conclusion is that neglecting the effect of the 
pressure gradient on the boundary layer in the main analysis, appears to be a justifiable 
approximation except at high surge velocities, where f~ might become significantly greater 
than unity. 

A P P E N D I X  2 

The static draining theory 

In this Appendix the equations of the static theory of viscous draining and evaporation 
are derived. The static equations may be derived from E62] directly, by putting co and 

&o/db = 0. The results are as follows: 

b o - ~ +  

F o r b / >  1, t = 2 1 n  - -  1 [2.1] 

b - ~ +  

where t = 0 at the initial thickness b o. 
When h < l, two cases must be considered, firstly that of q = 0, when 

t = q  +~ ~ -  1 [2.2] 

where t 1 is the time t when b = 1, and may be calculated from [2.13. Ifq > 0, then for b < 1, 

t = t 1 + F('l, b) [2.3] 

where F(fl, b) is given by 

= O~ [~  (fl'q- 002(b2 - o~b + ~ 2) 
3qq ln(h + a)2(fl 2 eft + a 2) + x /3a rc tg (2 f l - - -  a) F(fl, b) 

and where 

and fl is an arbitrary constant. 

[2.4] 
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If the initial thickness be ~< 1 and q = 0, then 

and ifbo<~ 1, q > 0 t h e n  

t - - - - ~  

t = F(bo,  b). [2.6] 

R~um6-- I1  existe un regime d'6coulement diphasique dans lequel dc grandes ondes ou des 
vagues d~ferlantes se propagent rapidement le long d 'une conduite horizontale. Leur passage est 
accompagn6 d'~claboussures, de rupture de vagues et d 'entrainement,  ce qui a pout r~sultat de 
projeter de l 'eau sur la paroi sup~rieure de la conduite. Entre deux vagues, le film pr6sent sur cette 
paroi sup6rieure s 'appauvri t  par 6coulement dfi ~ la gravit~ et par 6vaporation si la conduite est 
chauff6e. Si l'intervalle entre les vagues est suffisamment long, une tache s~che peut commencer  ~t 
se former. Dans  cet article, on d6crit une th6orie qui calcule l '6paisseur du film apr/~s passage de 
vagues, et le temps n~cessaire ~. l 'ass~chement. Le th6orie inclut l'effet du d6veloppement de lg 
couche limite durant  l 'alimentation du film, ainsi que l'effet de la d6c.616ration axiale de celui-ci au 
point o/1 sou alimentation en liquide cesse. Finalement,  la variation d'~paisseur de film calcul~e 
est compar6e avec des enregistrements experimentaux obtenus avec ce type d '6coulement dipha- 
sique. L 'accord s'av6re tr6s satisfaisant. L'int6r~t de cette analyse est li6 g la pr6vention des ass/mhe- 
merits permanents  ou intermittents aux faibles qualit6s dans les 6vaporateurs de centrales nucl6aires 
de puissance. 

Auszug- -Es  besteht eine Form der Zweiphasenstroemung,  in der grosse Wellen oder Stoesse schnell 
laengs eines wagerechten Rohres entlang wandern. Dies wird yon Spritzen, Wellenbrechen und 
Mitreissen begleitet, wodurch Wasser  au f  die Rohrscheiteloberflaeche geworfen wird. Zwischen 
den Stoessen verringert sich die Schicht au f  der Scheiteloberflaeche durch Abfluss unter  Schwerkraft, 
und  durch Verdampfung,  falls das Rohr  beheizt wird. Wenn das Interval zwischen den Stoessen 
lang genug ist, kann rich ein trockener Fleck bilden. In diesem Aufsatz wird eine Theorie fuer die 
Berechnung der Restschichtdicke auf  der Scheiteloberflaeche, und fuer die Berechnung der Zeit 
bis zum Trockenwerden, angegeben. Diese Theorie schliesst sowohl Effekte der Grenzschichtent- 
wicklung waehrend der Wiederauffuellung der Schicht, wie auch die Wirkung der axialen Verzoege- 
rung der Schicht ein, in dem Punkt  in dem die Fluessigkeitswiederauffuellung endet. Schliesslich 
wird die vorhergesagte Veraenderung der Schichtdicke mit experimentellen Spuren der Schichtdicke 
verglichen, wie sie bei dieser Form von horizontaler Zweiphasenstroemung erhalten werden. Es 
wird sehr befriedigende Uebere ins t immung gefunden. Die Analyse ist yon Interesse in Verbindung 
mit  der Verhuetung von dauerndem oder unterbrockenem Trockenwerden bei niedrigen Dampfo 
gehalten in Verdampfern von Kernkraftwerken. 

Pe3mMe--HoKaaan pe0gnM ~lBy~aanoro xeqeuns,  B KOTOpOM 60~bmHe BO.rlHbI l~.rlH BaMBI 6~acxpo 
npo~anra~oTca s~oab ropa3oHxaJIbnOfi xpy6u,  tIrO conpoBo~gaeTc~l pacrmecraBanneM, 
l lpo6.qeHHeM H 3aTon.qeHHeM BO~H, a p e a y ~ b T a T e  nero ao~la aa6pacbmaeTca Ha nepxatoro 
noBepxHOCTb Tpy6bI. B rrpoMe~yTKe MerRy s a a a ~ a  ~epxaaa no~epxnocTs o~mmaerc,  OX n a e u ~  
BO~,I nocpe~lcTnOM ~Ipermpo~aHHa n o r  gefiCTBHeM CHili T~eCTH, a T a ~ e  HcHapeHHeM B cayaae 
HaFp~TO~ Tpy6hL B cayqae, ec:m HpOMOKyTOK MC~Oly Ba.qaMH ROCTaTO~HO ~lO.qOF, BO3MO)KHO 
Haqaao d~opMnpOBaHH~l CyXHX yqacTroa. B ~laHaofi CTaxbe •aHa Teopnfl ~Jlfl pacaewa TOattmma 
n.rlenoK, OCTalOI/2HXOI Ha Bepxmix HoBepXHOCT~IX, n Bp~MeHH HX aldCblXaHHfl. ~)Ta TeOpH$I 
sr~roaaeT raK ~ a s H n e  cTeneni~ paamiTH~ romtmm,l  rpaHHnnoro enos  Be BpeMs HanozHeHna 
n~enrH, Tar H SYm~Iane oceBoro yMenbmeHnfl HY~eHKH B TOqre, rae  nonosmeHrm x~larOCTbrO 
nperpamaeTca. B 3ag-rlIotleHne BbItIHCYteHHoe HBMeHeHHe TO~lmam, I HaeHKH cpaBHnsaexca c 
aKCHepHMeHTaYlI~HbIMH cJIeZIaMH TOYIII][HH n~eHKn, nonyqeHrmlMn ~ aTOM Trine ropHaOHTaJIbHOFO 
~Byqba3Horo nOTOKa. Co~naRenHe ~IaHH/~IX Ha~eHO aec~Ma y/IOBJIeTBOpnTeJIbHI, IM. ~KaaaHHbIl~ 
aHaJLq3 npe~lcTaaJ~fleT HHTepec B I~eJIflx Hpe2IOTBpatt teHns HenpepbIBHOFO HJIH nyglbcHpy~ot t Ie ro  

ablCblXaHH~I npH HH3KOM KaqecTBe B HcHapHTeYI~:IX ~tjIepHbIX a.rleKTpOCTaHllrl~. 


